Low carbon energy film featuring OpenEnergyMonitor

A few months ago we were lucky to be contacted by a French film team wanting to feature OpenEnergyMonitor as part of a film about low carbon energy. The film "ACHIEVING 2050 I OPTIMIZE ENERG" aired in November this year.

The film can be watched online here (in French), the part featuring us starts at 28min in: Read on →

Heatpumps in the ZeroCarbonBritain model by the Centre for Alternative Technology.

Following on from last blog post on heat pump monitoring I will try in this post to give a bit of context on heat pumps. Heat pumps are interesting because they provide a way to make efficient use of renewable electricity for heating. They are used in many zero carbon energy scenario's including the ZeroCarbonBritain scenario from the Centre for Alternative Technology which is one of the most comprehensive UK based 100% renewable energy scenarios created.

This sankey diagram from the ZeroCarbonBritain report gives an overview of the energy flows in their scenario, with heat pumps providing the bulk of the heating and hot water demand: Read on →

Heat pump Monitoring

For a number of years now I have been working with John Cantor on monitoring heat pumps. John is one of the UK's foremost experts on heat pumps having worked in the field since the early 1980's, he has written a book on heat pumps and is an advisor and consultant on the technology.

Earlier this year we worked on reading heat metering data from a Kamstrup heat meter in order to obtain accurate heat output measurement in addition to system flow temperatures and electrical power input. After spending quite a bit of time adapting existing emontx hardware and often emontx v2 hardware to integrate the additional circuitry required we decided it might be better to try and design a dedicated heat pump monitoring board that would have all the functionality we needed on a single board.

This board is currently going through initial testing.
Read on →


OpenEnergyMonitor, emonPi and openHAB


Using the emonPi in it's current default configuration works great to post data to Emoncms for logging and visualisation. However there may be times when you want some more flexibility and or ability to interface with other hardware or services 

In my last few blog posts I have been taking a look at making the emonPi the heart of a smart energy optimised home and how live energy monitoring data from the emonPi can easily be used to inform other services:   


North Wales Tech Meetup Presentations

Yesterday evening Trystan and I attend a local meetup in Bangor, North Wales hosted by NorthWalesTech It was a good event with some interesting talks. Here are the slides from the 5min lightning talks we gave:
 
My slides give a brief overview of the OpenEnergyMontor project before diving in to MQTT and node-RED with a live demo controlling LightWave RF plugs switching Christmas lights over the web using MQTT and nodeRED:



Slides from N.Wales Tech meetup Dec 15. Brief overview of OpenEnergyMonitor and MQTT, nodeRED and LightWaveRF demo.

Related blog posts:
http://openenergymonitor.blogspot.com/2015/10/emonpi-nodered-and-mqtt.html 
http://openenergymonitor.blogspot.com/2015/11/remote-control-of-lightwave-rf-plugs.html 
http://openenergymonitor.blogspot.com/2015/11/node-red-emoncms-node.html 
http://openenergymonitor.blogspot.com/2015/11/ambient-wind-energy-indicator-using.html

---------------------------------------------------------------------------------------------------------

Trystan's lightning talk was focused on a heatpump which he has recently installed with John Cantor to heat his home. Trystan gave an overview of heatpump technology, his monitoring setup and the preliminary performance results:



Remote Control of LightWave RF plugs via MQTT using emonPi with OOK Tx

Using a Raspberry Pi as an emonPi / emonBase web-connected base station for energy monitoring has many advantages (maintainability, remote access, debugging, updated etc.) but it does seem rather wasteful to have a 900Mhz 1GB RAM machine being used to post a couple of integers to a web-server! The always-on nature of a web-connected base station and plenty of spare processing power makes it ideal to use the emonPi for more than just energy monitoring; home automation and heating control optimisation are obvious candidates.


Hardware

Many home automation products such as RF plugs, relays and heating remotes use a simple OOK (On-Off-Keying) wireless protocol. UK company LightWaveRF produce a variety of RF plugs and relays which can be controlled via OOK RF. The protocol is also compatible with some cheaper OOK learning receiver relays.  While maybe not strictly open-source the protocol and been reverse engineered allowing plugs to be easily controlled from Arduino / Raspberry Pi. There is an active LightWaveRF online community. Using off-the shelf hardware like this is a 'safe' way to control lights, heaters and appliances  around a home without getting our hands dirty dealing with with high voltages. These plugs and relays can be used to control anything from lights to immersion heaters, most LightWaveRF plugs/relays will switch up to 13A / 3kW.

Note: OOK protocol by it's simplistic nature is not particularly secure, I would not recommend controlling anything you don't mind getting accidently switched.

An OOK transmitter can easily be added to the emonPi.  We have started stocking OOK transmitter modules in the OpenEnergyMonitor store as well as adding an option to have OOK module factory installed on new emonPi's.

See emonPi Technical Hardware Wiki for details how to retrofit OOK TX module to existing emonPi's.

Software

We have been working with Lawrie Griffiths from Geek Grandad blog to develop a LightWaveRF MQTT service to run on a Raspberry Pi to allow LightWaveRF plugs to be controlled via MQTT.


Once running a plug can be controlled by publishing to the 'lwrf' MQTT topic:

E.g "1 1" switches on plug 1 while "1 0" switches off plug 1. Plugs can be paired in the usual LightWaveRF plug.

See emonPi technical Wiki for how to install & setup.

Existing LightWaveRF remotes can be emulated allowing plugs to be controlled from either emonPi MQTT or via the remote.

Now our plugs can be controlled via MQTT there are a many of options open as to how to control either via interface openHAB (blog post coming soon..), nodeRED, android Tasker etc.

I have been using nodeRED with input from android OwnTracks running on my phone to detect when I'm home and turn on a couple of lights:

Demo:

Using NodeRED and OwnTracks to turn on LightWave RF sockets when I arrive home: 




Using android Tasker with  AutoVoice and MQTT plugins to control LightWaveRF sockets:



Next Steps

Now we can control appliances remotely via MQTT the next logical step is to add a mobile user interface. In my next blog post I plan to explore setting up openHab to control appliances. Here's a early preview: 




We plan to include out-of-the-box support for OOK LightWave RF, nodeRED and openHab pre-configured on our next emonPi pre-built SD card. Due for release in December 2015.


UK Grid Carbon Intensity API


Following on from my blog post creating an ambient indicator to indicate wind turbine renewable electricity generation we have extended the Emoncms UK electric grid statistic aggregation to calculate and record the UK electric grid carbon intensity i.e. the amount of carbon emitted per kWh (CO2/kWh). As before we have created a dashboard open API for easy access to this data.

http://emoncms.org/ukelectricitygrid/ukgrid

http://emoncms.org/ukelectricitygrid/ukwind

Dashboards:

Open-API:
UK grid carbon intensity: http://emoncms.org/feed/value.json?id=97715
UK wind: http://emoncms.org/feed/value.json?id=67088

Other feeds are also available including grid fuel mix and current energy demand, just place 'id' in the API with the feed ID's below: 

FeedNameCurrent Value (22/11/15 22hrs)
97689CCGT_val11592
97690CCGT_prc0.31
97691OCGT_val0
97692OCGT_prc0
97693OIL_val0
97694OIL_prc0
97695COAL_val10785
97696COAL_prc0.29
97697NUCLEAR_val7798
97698NUCLEAR_prc0.21
97699WIND_val1308
97700WIND_prc0.03
97701PS_val397
97702PS_prc0.01
97703NPSHYD_val533
97704NPSHYD_prc0.01
97705OTHER_val1976
97706OTHER_prc0.05
97707INTFR_val1495
97708INTFR_prc0.04
97709INTIRL_val0
97710INTIRL_prc0
97711INTNED_val975
97712INTNED_prc0.02
97713INTEW_val0
97714INTEW_prc0
97715gridintensity435.6
97736totalsupply36859
If you use the API in your project please drop us a line and give Emoncms some credit :-)

The data is captured from the UK Balancing BM Reports XML. Our figure for grid intensity matched the figure generated by http://www.gridcarbon.uk/

Node-RED Emoncms Node


I have recently been experimented using Node-RED for a number of tasks. Thanks to the work of others a Node-RED flow node already existed for Emoncms making it very easy to post data to Emoncms. For my Ambient Wind Energy Indicator I had the need to extract real-time feed data from Emoncms feeds using the Emoncms API. I have now contributed this functionality to the official Node-RED Emoncms node. Using the updated Emoncms node it's now super easy to post data to extract latest real-time feed values from any Emoncms server including Emoncms.org.

Get the latest version from: http://flows.nodered.org/node/node-red-node-emoncms. If you're interested in viewing and improving the functionality the open-source code behind the node is up on the Node-RED flows GitHub

Emoncms Node-RED node

Install with:

$ cd ~/.node-red
$ npm install node-red-node-emoncms

Node Documentation

Emoncms in Node Config

Emoncms Server Config



OpenEnergyMonitor November 2015 - Overview Presentation

Here's a few slides giving an overview of the OpenEnergyMonitor project as it stands currently in November 2015. It features some of the work we have been doing looking at the embodied energy involved in producing and shipping some of our products as well as latest developments on Emoncms application dashboards



OpenEnergyMonitor Overview November 2015 from OpenEnergyMonitor

Notes to accompany the slides can be found here.